MARK SCHEME for the October/November 2013 series

9709 MATHEMATICS

9709/31

Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	31

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9709	31

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4 Mark Scheme Syllabus		Paper	r		
			GCE A LEVEL – October/November 2013	9709	31	
1	Obtain c	correct	otient or product rule derivative in any form en statement		M1 A1 A1	[3]
2	EITHER	State	or imply non-modular equation $2^2(3^x - 1)^2 = (3^x)^2$, or pair	r of equations		
		`	$(-1)=\pm 3^x$		M1	
		Obtai	in $3^x = 2$ and $3^x = \frac{2}{3}$ (or $3^{x+1} = 2$)		A1	
	OR:	Obtai	in $3^x = 2$ by solving an equation or by inspection		B1	
		Obtai	in $3^x = \frac{2}{3}$ (or $3^{x+1} = 2$) by solving an equation or by inspection	ion	B1	
			thod for solving an equation of the form $3^x = a$ (or $3^{x+1} = a$) swers 0.631 and -0.369	, where $a > 0$	M1 A1	[4]
3	EITHER	?:Integ	rate by parts and reach $kx^{\frac{1}{2}} \ln x - m \int x^{\frac{1}{2}} \cdot \frac{1}{x} dx$		M1*	
		Obtai	in $2x^{\frac{1}{2}} \ln x - 2 \int \frac{1}{x^{\frac{1}{2}}} dx$, or equivalent		A1	
		Subst	rate again and obtain $2x^{\frac{1}{2}} \ln x - 4x^{\frac{1}{2}}$, or equivalent titute limits $x = 1$ and $x = 4$, having integrated twice in answer $4(\ln 4 - 1)$, or exact equivalent		A1 M1(dep*) A1	
	OR1:	Using	g $u = \ln x$, or equivalent, integrate by parts and reach $kue^{\frac{1}{2}u}$	$-m\int e^{\frac{1}{2}u}du$	M1*	
			in $2ue^{\frac{1}{2}u} - 2\int e^{\frac{1}{2}u} du$, or equivalent		A1	
		Subst	rate again and obtain $2ue^{\frac{1}{2}u} - 4e^{\frac{1}{2}u}$, or equivalent titute limits $u = 0$ and $u = \ln 4$, having integrated twice in answer $4\ln 4 - 4$, or exact equivalent		A1 M1(dep*) A1	
	OR2:	Using	g $u = \sqrt{x}$, or equivalent, integrate and obtain $ku \ln u - m \int u$.	$\frac{1}{u}$ du	M1*	
		Obtai	in $4u \ln u - 4 \int 1 du$, or equivalent	и	A1	
			rate again and obtain $4u \ln u - 4u$, or equivalent		A1	
		Subst	titute limits $u = 1$ and $u = 2$, having integrated twice or quot	ted $\int \ln u \mathrm{d}u$		
			$nu \pm u$ in answer $8 \ln 2 - 4$, or exact equivalent	·	M1(dep*) A1	
	OR3:	Integ	rate by parts and reach $I = \frac{x \ln x \pm x}{\sqrt{x}} + k \int \frac{x \ln x \pm x}{x \sqrt{x}} dx$		M1*	
		Obtai	in $I = \frac{x \ln x - x}{\sqrt{x}} + \frac{1}{2}I - \frac{1}{2}\int \frac{1}{\sqrt{x}} dx$		A1	
		Subst	rate and obtain $I = 2\sqrt{x} \ln x - 4\sqrt{x}$, or equivalent titute limits $x = 1$ and $x = 4$, having integrated twice in answer $4 \ln 4 - 4$, or exact equivalent		A1 M1(dep*) A1	[5]

	Page 5			r
		GCE A LEVEL – October/November 2013 970	09 31	
4	Use corr	rect product or quotient rule at least once	M1*	
	Obtain -	$\frac{\mathrm{d}x}{\mathrm{d}t} = \mathrm{e}^{-t}\sin t - \mathrm{e}^{-t}\cos t \text{or} \frac{\mathrm{d}y}{\mathrm{d}t} = \mathrm{e}^{-t}\cos t - \mathrm{e}^{-t}\sin t \text{, or equivalent}$	A1	
		$=\frac{\mathrm{d}y}{\mathrm{d}t}\div\frac{\mathrm{d}x}{\mathrm{d}t}$	M1	
	Obtain -	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sin t - \cos t}{\sin t + \cos t}, \text{ or equivalent}$	A1	
	EITHER	2: Express $\frac{dy}{dx}$ in terms of tan <i>t</i> only	M1(dep*)	
		Show expression is identical to $\tan\left(t - \frac{1}{4}\pi\right)$	A1	
	OR:	Express $\tan\left(t - \frac{1}{4}\pi\right)$ in terms of $\tan t$	M1	
		Show expression is identical to $\frac{dy}{dx}$	A1	[6]
5	(i)	Use Pythagoras	M1	
		Use the sin2 <i>A</i> formula Obtain the given result	M1 A1	[3]
	(ii)	Integrate and obtain a $k \ln \sin \theta$ or $m \ln \cos \theta$ term, or obtain integral $e^{p} \ln \tan \theta$	of the form M1*	
		Obtain indefinite integral $\frac{1}{2}\ln\sin\theta - \frac{1}{2}\ln\cos\theta$, or equivalent, or $\frac{1}{2}\ln\tan\theta$	<i>θ</i> A1	
		Substitute limits correctly Obtain the given answer correctly having shown appropriate working	M1(dep)* A1	[4]
6	(i)	State or imply $AB = 2r\cos\theta$ or $AB^2 = 2r^2 - 2r^2\cos(\pi - 2\theta)$	B1	
		Use correct formula to express the area of sector <i>ABC</i> in terms of <i>r</i> and θ	M1	
		Use correct area formulae to express the area of a segment in terms of r and State a correct equation in r and θ in any form	nd θ M1 A1	
		Obtain the given answer	A1	[5]
		[SR: If the complete equation is approached by adding two sectors to area above <i>BO</i> and <i>OC</i> give the first M1 as on the scheme, and the for using correct area formulae for a triangle <i>AOB</i> or <i>AOC</i> , and a or <i>AOC</i> .]	second M1	
	(ii)	Use the iterative formula correctly at least once Obtain final answer 0.95	M1 A1	
		Show sufficient iterations to 4 d.p. to justify 0.95 to 2 d.p., or show the change in the interval (0.945, 0.955)	re is a sign A1	[3]

Pa	ige 6	Mark Scheme	Syllabus	Paper	-
		GCE A LEVEL – October/Novem	ber 2013 9709	31	
7	(i)	State or imply partial fractions are of the form $\frac{1}{x}$ Use a relevant method to determine a constant Obtain one of the values $A = -1$, $B = 3$, $C = -1$ Obtain a second value Obtain the third value	$\frac{A}{-2} + \frac{Bx+C}{x^2+3}$	B1 M1 A1 A1 A1	[5]
	(ii)	Use correct method to obtain the first two ter $\left(1-\frac{1}{2}x\right)^{-1}$, $\left(x^2+3\right)^{-1}$ or $\left(1+\frac{1}{3}x^2\right)^{-1}$ Substitute correct unsimplified expansions up partial fraction Multiply out fully by $Bx + C$, where $BC \neq 0$ Obtain final answer $\frac{1}{6}+\frac{5}{4}x+\frac{17}{72}x^2$, or equivalent [Symbolic binomial coefficients, e.g. $\begin{pmatrix}-1\\1\end{pmatrix}$ are son A, B, C.] [In the case of an attempt to expand $\left(2x^2-7x-1\right)^{-1}$ for the expansions, M1 for multiplying out fully, [If B or C omitted from the form of partial fraction M1A1 $\sqrt[n]{}$ A1 $\sqrt[n]{}$ in (ii)]	Ip to the term in x^2 into each All All not sufficient for the M1. The f.t. $-1)(x-2)^{-1}(x^2+3)^{-1}$, give M1A1A and A1 for the final answer.]	M1 ch $I\sqrt[h]{+}+A1\sqrt[h]{}$ M1 A1 is	[5]
8 (a)	OR: Obt	HER: Solve for u or for v Obtain $u = \frac{2i-6}{1-2i}$ or $v = \frac{5}{1-2i}$, or equivalent Either: Multiply a numerator and denomin or equivalent Or: Set u or v equal to $x + iy$, obtain tw imaginary parts and solve for x or for y Using $a + ib$ and $c + id$ for u and v, equate four equations in a, b, c and d Obtain $b + 2d = 2$, $a + 2c = 0$, $a + d = 0$ and Solve for one unknown in final answer $u = -2$ -2i, or equivalent in final answer $v = 1 + 2i$, or equivalent	nator by conjugate of denominator wo equations by equating real and real and imaginary parts and obta	nd M1	[5]
(b)	Sho Sho Use	w a circle with centre $-i$ w a circle with radius 1 w correct half line from 2 at an angle of $\frac{3}{4}\pi$ to the a correct method for finding the least value of the in final answer $\frac{3}{\sqrt{2}}-1$, or equivalent, e.g. 1.12 (a	modulus	B1 B1 B1 M1 A1	[5]

	Page 7	7	Mark Scheme	Syllabus	Paper	,
			GCE A LEVEL – October/November 2013	9709	31	
9 (i)		EITH	<i>IER:</i> Obtain a vector parallel to the plane, e.g. $\overrightarrow{AB} = -2\mathbf{i} + 4$. Use scalar product to obtain an equation in <i>a</i> , <i>b</i> , <i>c</i> , e	-		
			3a - 3b + 3c = 0, or $a + b + 2c = 0$		M1	
			Obtain two correct equations in a, b, c		A1	
			Solve to obtain ratio $a : b : c$		M1	
			Obtain $a:b:c=3:1:-2$, or equivalent		A1	
		0.0.1	Obtain equation $3x + y - 2z = 1$, or equivalent		A1	
		OR1:	Substitute for two points, e.g. A and B, and ob and $3b + c = d$ Substitute for another point, e.g. C, to obtain a third ec		B1	
			one unknown entirely from the three equations	1	M1	
			Obtain two correct equations in three unknowns, e.g. in	n <i>a, b, c</i>	A1	
			Solve to obtain their ratio, e.g. $a:b:c$		M1	
			Obtain $a:b:c=3:1:-2$, $a:c:d=3:-2:1$,	a:b:d=3:1:1	or	
			b: c: d = -1: -2: 1		A1	
			Obtain equation $3x + y - 2z = 1$, or equivalent		A1	
		OR2:			B1	
			Obtain a second such vector and calculate their vector e.g. $(-2\mathbf{i}+4\mathbf{j}-\mathbf{k})\times(3\mathbf{i}-3\mathbf{j}+3\mathbf{k})$	product	M1	
			Obtain two correct components of the product		A1	
			Obtain correct answer, e.g. $9\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}$		A1	
			Substitute in $9x + 3y - 6z = d$ to find d		M1	
			Obtain equation $9x + 3y - 6z = 3$, or equivalent		A1	
		OR3:			B1	
			Obtain a second such vector and form correctly a 2-pa the plane	arameter equation	for M1	
			Obtain a correct equation, e.g. $\mathbf{r} = 3\mathbf{i} + 4\mathbf{k} + \lambda(-2\mathbf{i} + 4\mathbf{j})$	$-\mathbf{k}$)+ μ (\mathbf{i} + \mathbf{j} +2 \mathbf{k}) A1	
			State three correct equations in x, y, z, λ, μ	, .	A1	
			Eliminate λ and μ		M1	
			Obtain equation $3x + y - 2z = 1$, or equivalent		A1	[6]
	(ii)	Obtai	in answer $\mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$, or equivalent		B1	[1]

Page	8	Mark Scheme	Syllabus	Paper	
		GCE A LEVEL – October/November 2013	9709	31	
(iii) EITHE OR1: OR2:		<i>ER</i> : Use $\frac{\overrightarrow{OA},\overrightarrow{OD}}{\left \overrightarrow{OD}\right }$ to find projection <i>ON</i> of <i>OA</i> onto <i>OD</i>		31 M1 A1 A1 A1 A1 M1 A1 A1	
		Obtain $ON = \frac{4}{3}$		A1	
		Use Pythagoras in triangle <i>OAN</i> to find <i>AN</i> Obtain the given answer			
	OR1:	\rightarrow \rightarrow			
	OR2:	Divide the modulus of the vector product by the module Obtain the given answer		M1 A1	
		an equation in λ by either equating the scalar product zero, or using Pythagoras in triangle <i>OPA</i> , or setting the			
		to zero	I	1	
		Solve and obtain $\lambda = \frac{4}{9}$		A1	
		Carry out method to calculate <i>AP</i> when $\lambda = \frac{4}{9}$		M1	
	OR3:	Obtain the given answer Use a relevant scalar product to find the cosine of <i>AOD</i>	or ADO		
		Obtain $\cos AOD = \frac{4}{9}$ or $\cos ADO = \frac{5}{3\sqrt{10}}$, or equivalent	nt	A1	
	OR4:	Use trig to find the length of the perpendicular Obtain the given answer Use cosine formula in triangle <i>AOD</i> to find cos <i>AOD</i> or	and ADO	A1	
	01.4.	Obtain $\cos AOD = \frac{8}{18}$ or $\cos ADO = \frac{10}{6\sqrt{10}}$, or equivalent			
		Use trig to find the length of the perpendicular Obtain the given answer			[4]
10 (i)		or imply $V = \pi h^3$		B1	
	State	or imply $\frac{\mathrm{d}V}{\mathrm{d}t} = -k\sqrt{h}$		B1	
	Use -	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \cdot \frac{\mathrm{d}h}{\mathrm{d}t}$, or equivalent		M1	
	[The	n the given equation M1 is only available if $\frac{dV}{dh}$ is in terms of h and has it ct method.]	been obtained by		[4]
		w B1 for $\frac{dV}{dt} = k\sqrt{h}$ but withhold the final A1 until the pol	arity of the const	ant	
	$\frac{1}{3\pi}$ h	has been justified.]			

Page 9)	Mark Scheme	Syllabus	Paper	,
		GCE A LEVEL – October/November 2013	9709	31	
(ii)		rate variables and integrate at least one side		M1	
	Obta	in terms $\frac{2}{5}h^{\frac{5}{2}}$ and $-At$, or equivalent		A1	
	Use	$t = 0, h = H$ in a solution containing terms of the form $ah^{\frac{5}{2}}$	and $bt + c$	M1	
	Use	$t = 60, h = 0$ in a solution containing terms of the form $ah^{\frac{3}{2}}$	and $bt + c$	M1	
	Obta	in a correct solution in any form, e.g. $\frac{2}{5}h^{\frac{5}{2}} = \frac{1}{150}H^{\frac{5}{2}}t + \frac{2}{5}H^{\frac{5}{2}}$	$\frac{5}{2}$	A1	
(ii)	Obta	in final answer $t = 60 \left(1 - \left(\frac{h}{H} \right)^{\frac{5}{2}} \right)$, or equivalent		A1	

(iii) Substitute
$$h = \frac{1}{2}H$$
 and obtain answer $t = 49.4$ B1 [1]